# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch.nn as nn
from modelzoo.common.pytorch.layers import (
EmbeddingLayer,
FeedForwardNetwork,
TransformerEncoder,
TransformerEncoderLayer,
)
from modelzoo.transformers.pytorch.transformer_utils import (
make_key_padding_mask_broadcastable,
)
[docs]class BertPooler(nn.Module):
[docs] def __init__(
self,
hidden_size,
pooler_norm=False,
layer_norm_epsilon=1.0e-5,
use_bias=True,
activation="gelu",
dropout=None,
initializer="xavier_uniform",
):
super().__init__()
self.pooler_norm = None
if pooler_norm:
self.pooler_norm = nn.LayerNorm(hidden_size, eps=layer_norm_epsilon)
self.pooler = FeedForwardNetwork(
input_unit=hidden_size,
layers_units=[hidden_size],
layers_activation=[activation],
layers_dropout_rates=[dropout],
use_bias=use_bias,
kernel_initializer=initializer,
)
def reset_parameters(self):
if self.pooler_norm is not None:
self.pooler_norm.weight.data.fill_(1.0)
if self.pooler_norm.bias is not None:
self.pooler_norm.bias.data.zero_()
self.pooler.reset_parameters()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state
# corresponding to the first token.
# shape [batch_size, hidden_size]
cls_hidden_states = hidden_states[:, 0]
if self.pooler_norm is not None:
cls_hidden_states = self.pooler_norm(cls_hidden_states)
pooled_output = self.pooler(cls_hidden_states)
return pooled_output
[docs]class BertModel(nn.Module):
"""
The model behaves as a bidirectional encoder (with only self-attention), following the architecture described in `Attention is
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 30522):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.BertModel` or
:class:`~transformers.TFBertModel`.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
position_embedding_type(:obj:`str`, `optional`, defaults to 'learned'):
The type of position embeddings, should either be 'learned' or 'fixed'.
hidden_size (:obj:`int`, `optional`, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
embedding_dropout_rate (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for the word embeddings.
embedding_pad_token_id (:obj:`int`, `optional`, defaults to 0):
The embedding vector at embedding_pad_token_id is not updated during training.
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
layer_norm_epsilon (:obj:`float`, `optional`, defaults to 1e-5):
The epsilon used by the layer normalization layers.
num_heads (:obj:`int`, `optional`, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
attention_type (:obj:`str`, `optional`, defaults to 'scaled_dot_product'):
The attention variant to execute. Currently
accepts ``dot_product`` and ``scaled_dot_product``.
attention_softmax_fp32 (:obj:`bool`, `optional`, defaults to :obj:`True`):
If True, attention softmax uses fp32 precision else fp16/bf16 precision
dropout_rate (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
nonlinearity: (:obj:`string`, `optional`, defaults to :obj:`gelu`):
The non-linear activation function (function or string) in the encoder and pooler.
attention_dropout_rate (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for the attention probabilities.
use_projection_bias_in_attention (:obj:`bool`, `optional`, defaults to :obj:`True`):
If True, bias is used on the projection layers in attention.
use_ffn_bias_in_attention (:obj:`bool`, `optional`, defaults to :obj:`True`):
If True, bias is used in the dense layer in the attention.
filter_size (:obj:`int`, `optional`, defaults to 3072):
Dimensionality of the feed-forward layer in the Transformer encoder.
use_ffn_bias: (:obj:`bool`, `optional`, defaults to :obj:`True`):
If True, bias is used in the dense layer in the encoder.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer as the default initializer.
num_segments (:obj:`int`, `optional`, defaults to 2):
The vocabulary size of the segments (sentence types).
embeddings_initializer (:obj:`dict`, `optional`, defaults to None):
Initializer for word embeddings
position_embeddings_initializer (:obj:`dict`, `optional`, defaults to None):
Initializer for position embeddings (if learned position embeddings)
segment_embeddings_initializer (:obj:`dict`, `optional`, defaults to None):
Initializer for segment embeddings
add_pooling_layer (:obj:`bool`, `optional`, defaults to True):
Whether to add the pooling layer for sequence classification.
"""
# TODO(SW-76063): We may need a general configuration class to avoid writing those params explicitly
[docs] def __init__(
self,
# Embedding
vocab_size=50257,
max_position_embeddings=1024,
position_embedding_type="learned",
hidden_size=768,
embedding_dropout_rate=0.1, # need to be careful when testing
embedding_pad_token_id=0,
mask_padding_in_positional_embed=False,
# Encoder
num_hidden_layers=12,
layer_norm_epsilon=1.0e-5,
# Encoder Attn
num_heads=12,
attention_module="aiayn_attention",
extra_attention_params={},
attention_type="scaled_dot_product",
attention_softmax_fp32=True,
dropout_rate=0.1,
nonlinearity="gelu",
pooler_nonlinearity=None,
attention_dropout_rate=0.1,
use_projection_bias_in_attention=True,
use_ffn_bias_in_attention=True,
# Encoder ffn
filter_size=3072,
use_ffn_bias=True,
# Task-specific
use_final_layer_norm=False,
initializer_range=0.02,
num_segments=2,
default_initializer=None,
embeddings_initializer=None,
position_embeddings_initializer=None,
segment_embeddings_initializer=None,
add_pooling_layer=True,
attention_kernel=None,
**extra_args,
):
super().__init__()
self.initializer_range = initializer_range
self.add_pooling_layer = add_pooling_layer
if default_initializer is None:
default_initializer = {
"name": "truncated_normal",
"std": self.initializer_range,
"mean": 0.0,
"a": self.initializer_range * -2.0,
"b": self.initializer_range * 2.0,
}
if embeddings_initializer is None:
embeddings_initializer = default_initializer
if position_embeddings_initializer is None:
position_embeddings_initializer = default_initializer
if segment_embeddings_initializer is None:
segment_embeddings_initializer = default_initializer
self.embedding_layer = EmbeddingLayer(
vocab_size=vocab_size,
embedding_size=hidden_size,
pad_token_id=embedding_pad_token_id,
embeddings_initializer=embeddings_initializer,
max_position_embeddings=max_position_embeddings,
position_embedding_type=position_embedding_type,
position_embedding_offset=(
# We only need to add position embedding offset when we're using
# masked padding in positional embed
embedding_pad_token_id
if mask_padding_in_positional_embed
else 0
),
mask_padding_in_positional_embed=mask_padding_in_positional_embed,
position_embeddings_initializer=position_embeddings_initializer,
num_segments=num_segments,
segment_embeddings_initializer=segment_embeddings_initializer,
)
self.dropout_embd = nn.Dropout(embedding_dropout_rate)
encoder_layer = TransformerEncoderLayer(
d_model=hidden_size,
nhead=num_heads,
dim_feedforward=filter_size,
dropout=dropout_rate,
activation=nonlinearity,
layer_norm_eps=layer_norm_epsilon,
attention_module=attention_module,
extra_attention_params=extra_attention_params,
attention_dropout_rate=attention_dropout_rate,
attention_type=attention_type,
attention_softmax_fp32=attention_softmax_fp32,
use_projection_bias_in_attention=use_projection_bias_in_attention,
use_ffn_bias_in_attention=use_ffn_bias_in_attention,
use_ffn_bias=use_ffn_bias,
attention_initializer=default_initializer,
ffn_initializer=default_initializer,
)
self.embed_ln_f = nn.LayerNorm(hidden_size, eps=layer_norm_epsilon)
final_ln_f = None
if use_final_layer_norm:
final_ln_f = nn.LayerNorm(hidden_size, eps=layer_norm_epsilon)
self.transformer_encoder = TransformerEncoder(
encoder_layer, num_layers=num_hidden_layers, norm=final_ln_f,
)
if pooler_nonlinearity is None:
pooler_nonlinearity = nonlinearity
self.pooler = (
BertPooler(
hidden_size,
use_bias=use_ffn_bias,
activation=pooler_nonlinearity,
dropout=None,
initializer=default_initializer,
)
if self.add_pooling_layer
else None
)
self.__reset_parameters()
# TODO: Add sparse attention
def reset_parameters(self):
self.embedding_layer.reset_parameters()
self.transformer_encoder.reset_parameters()
self.pooler.reset_parameters()
self.__reset_parameters()
def __reset_parameters(self):
# Init norm layers
self.embed_ln_f.bias.data.zero_()
self.embed_ln_f.weight.data.fill_(1.0)
[docs] def forward(
self,
input_ids=None,
position_ids=None,
segment_ids=None,
attention_mask=None,
):
"""
Args:
input_ids (Tensor): The id of input tokens
Can be of shape ```[batch_size, seq_length]`
position_ids (Tensor):
The position id of input tokens. Can be of shape ``[batch_size, seq_length]``
segment_ids (Tensor): The segment id of input tokens, indicating which sequence the token belongs to
Can be of shape ```[batch_size, seq_length]`
attention_mask (Tensor):
Can be 2D of shape ``[batch_size, seq_length]``,
or 3D of shape ``[batch, query_length, seq_length]``,
or 4D of shape ``[batch, num_heads, query_length, seq_length]``.
"""
src_key_padding_mask = None
hidden_states = self.embedding_layer(
input_ids, position_ids=position_ids, segment_ids=segment_ids,
)
hidden_states = self.embed_ln_f(hidden_states)
hidden_states = self.dropout_embd(hidden_states)
if attention_mask is not None:
attention_mask = make_key_padding_mask_broadcastable(
attention_mask, dtype=hidden_states.dtype
)
if len(attention_mask.size()) == 2:
src_key_padding_mask = attention_mask
attention_mask = None
hidden_states = self.transformer_encoder(
hidden_states,
mask=attention_mask,
src_key_padding_mask=src_key_padding_mask,
)
pooled_output = None
if self.add_pooling_layer:
pooled_output = self.pooler(hidden_states)
return hidden_states, pooled_output