Source code for modelzoo.transformers.pytorch.bert.fine_tuning.qa.run_prediction

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This code is adapted from
# https://github.com/google-research/bert/blob/master/run_squad.py
#
# Copyright 2022 Cerebras Systems.
#
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import collections
import json
import math
import os

import six
import torch
import tqdm

# isort: off
import sys

sys.path.append(os.path.join(os.path.dirname(__file__), "../../../../../.."))
# isort: on
from modelzoo.common.input.utils import save_params
from modelzoo.common.run_utils.cli_parser import get_params
from modelzoo.transformers.data_processing.qa.qa_utils import (
    convert_examples_to_features_and_write,
    read_squad_examples,
)
from modelzoo.transformers.data_processing.tokenizers.Tokenization import (
    BaseTokenizer,
    FullTokenizer,
)
from modelzoo.transformers.pytorch.bert.fine_tuning.qa.data import (
    predict_input_dataloader,
)
from modelzoo.transformers.pytorch.bert.fine_tuning.qa.model import (
    BertForQuestionAnsweringModel as Model,
)


[docs]def parse_args(): parser = argparse.ArgumentParser() # required args parser.add_argument( "--params", required=True, help="Path to yaml configuration.", ) parser.add_argument( "--predict_file", required=True, help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json", ) parser.add_argument( "--checkpoint_path", required=True, help="Path to checkpoint of a fine-tuned BERT model.", ) # optional args parser.add_argument( "--output_dir", required=False, default=os.path.join( os.path.dirname(os.path.abspath(__file__)), "prediction_output" ), help="The output directory where the data and predictions will be written.", ) parser.add_argument( "--do_lower_case", required=False, action="store_true", help="Whether to convert tokens to lowercase", ) parser.add_argument( "--max_seq_length", required=False, type=int, default=384, help="The maximum total input sequence length after WordPiece tokenization.", ) parser.add_argument( "--doc_stride", required=False, type=int, default=128, help="When splitting up a long document into chunks, how much stride to " "take between chunks.", ) parser.add_argument( "--max_query_length", required=False, type=int, default=64, help="The maximum number of tokens for the question. Questions longer than " "this will be truncated to this length.", ) parser.add_argument( "--n_best_size", required=False, type=int, default=1, help="The total number of n-best predictions to generate in the " "nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", required=False, type=int, default=30, help="The maximum length of an answer that can be generated. This is needed " "because the start and end predictions are not conditioned on one another.", ) parser.add_argument( "--verbose_logging", required=False, action="store_true", help="If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.", ) parser.add_argument( "--version_2_with_negative", required=False, action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", required=False, type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold " "predict null.", ) args = parser.parse_args() return args
RawResult = collections.namedtuple( "RawResult", ["unique_id", "start_logits", "end_logits"] )
[docs]def main(): args = parse_args() params = get_params(args.params) if params["predict_input"]["batch_size"] != 1: print("To avoid dropping examples, batch_size 1 will be used.") params["predict_input"]["batch_size"] = 1 vocab_file = params["predict_input"]["vocab_file"] os.makedirs(args.output_dir) tokenizer = FullTokenizer( vocab_file=vocab_file, do_lower_case=args.do_lower_case ) print("Reading squad examples...") eval_examples = read_squad_examples( input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative, ) file_prefix = "eval" num_output_files = 1 print("Writing tokenized examples to csv...") ( num_examples_written, meta_data, eval_features, ) = convert_examples_to_features_and_write( examples=eval_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, output_dir=args.output_dir, file_prefix=file_prefix, num_output_files=num_output_files, is_training=False, return_features=True, ) meta_file = os.path.join(args.output_dir, "meta.dat") with open(meta_file, "w") as fout: for output_file, num_lines in meta_data.items(): fout.write("%s %s\n" % (output_file, num_lines)) # Write args passed and number of examples args_dict = vars(args) args_dict["num_examples"] = num_examples_written save_params(args_dict, model_dir=args.output_dir) num_read_examples = len(eval_examples) num_features = len(eval_features) print("Num examples read = %i" % (num_read_examples)) print("Num features = %i" % (num_features)) print("Num examples written = %i" % (num_examples_written)) assert params["predict_input"]["batch_size"] == 1 params["predict_input"]["data_dir"] = args.output_dir params["runconfig"]["mode"] = "eval" data_loader = predict_input_dataloader(params) num_total_examples = len(data_loader) print("Num examples in dataloader = %i" % (num_total_examples)) print("Batch size = %i" % (params["predict_input"]["batch_size"])) model = Model(params) model.eval() checkpoint_path = args.checkpoint_path if checkpoint_path: print("Loading checkpoint_path = %s" % checkpoint_path) state_dict = torch.load(checkpoint_path, map_location="cpu") model.model.load_state_dict(state_dict["model"]) print("Running predictions...") all_results = [] with torch.no_grad(): for example_index, features in tqdm.tqdm( enumerate(data_loader), total=num_total_examples ): loss = model(features) unique_id = features["unique_ids"] start_logits = model.outputs["start_logits"].squeeze().tolist() end_logits = model.outputs["end_logits"].squeeze().tolist() unique_id = int(unique_id) all_results.append( RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits, ) ) num_results = len(all_results) print("Num results = %i" % (num_results)) output_prediction_file = os.path.join(args.output_dir, "predictions.json") output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json") output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json") print("Writing predictions...") write_predictions( eval_examples, eval_features, all_results, args.n_best_size, args.max_answer_length, args.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, vocab_file, args.version_2_with_negative, args.null_score_diff_threshold, args.verbose_logging, ) print("Done.")
[docs]def write_predictions( all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, vocab_file, version_2_with_negative=False, null_score_diff_threshold=0.0, verbose_logging=False, ): """ Write final predictions to the json file and log-odds of null if needed. """ print("Writing predictions to: %s" % (output_prediction_file)) print("Writing nbest to: %s" % (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( "PrelimPrediction", [ "feature_index", "start_index", "end_index", "start_logit", "end_logit", ], ) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for example_index, example in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min mull score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score print("DEBUG: len(features) = ", len(features), flush=True) for feature_index, feature in enumerate(features): print("DEBUG: feature_index = ", feature_index, flush=True) print("DEBUG: feature = ", feature, flush=True) result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if version_2_with_negative: feature_null_score = ( result.start_logits[0] + result.end_logits[0] ) if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] print("DEBUG: start_indexes = ", start_indexes, flush=True) print("DEBUG: end_indexes = ", end_indexes, flush=True) for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. print( "DEBUG: start_index, end_index = ", start_index, end_index, flush=True, ) if start_index >= len(feature.tokens): print( "DEBUG: start_index >= len(feature.tokens)", start_index, len(feature.tokens), flush=True, ) continue if end_index >= len(feature.tokens): print( "DEBUG: end_index >= len(feature.tokens)", end_index, len(feature.tokens), flush=True, ) continue if start_index not in feature.token_to_orig_map: print( "DEBUG: start_index not in feature.token_to_orig_map", start_index, flush=True, ) continue if end_index not in feature.token_to_orig_map: print( "DEBUG: end_index not in feature.token_to_orig_map", end_index, flush=True, ) continue if not feature.token_is_max_context.get(start_index, False): print( "DEBUG: not feature.token_is_max_context", start_index, feature.token_is_max_context.get( start_index, False ), flush=True, ) continue if end_index < start_index: print( "DEBUG: end_index < start_index", end_index, start_index, flush=True, ) continue length = end_index - start_index + 1 if length > max_answer_length: print( "DEBUG: length > max_answer_length", length, max_answer_length, flush=True, ) continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index], ) ) if version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit, ) ) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True, ) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"] ) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[ pred.start_index : (pred.end_index + 1) ] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[ orig_doc_start : (orig_doc_end + 1) ] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text( tok_text, orig_text, vocab_file, do_lower_case, verbose_logging=verbose_logging, ) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit, ) ) # if we didn't include the empty option in the n-best, include it if version_2_with_negative: if "" not in seen_predictions: nbest.append( _NbestPrediction( text="", start_logit=null_start_logit, end_logit=null_end_logit, ) ) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: print("DEBUG: empty", flush=True) print( "DEBUG: prelim_predictions = ", prelim_predictions, flush=True ) print("DEBUG: features = ", features, flush=True) nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0) ) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 if not version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - the score of best non-null > threshold score_diff = ( score_null - best_non_null_entry.start_logit - (best_non_null_entry.end_logit) ) scores_diff_json[example.qas_id] = score_diff if score_diff > null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json with open(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with open(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: with open(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
[docs]def get_final_text( pred_text, orig_text, vocab_file, do_lower_case, verbose_logging=False ): """ Project the tokenized prediction back to the original text. """ # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heuristic between # `pred_text` and `orig_text` to get a character-to-character alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = BaseTokenizer(vocab_file, do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if verbose_logging: print("Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if verbose_logging: print( "Length not equal after stripping spaces: '%s' vs '%s'" % (orig_ns_text, tok_ns_text) ) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in six.iteritems(tok_ns_to_s_map): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if verbose_logging: print("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if verbose_logging: print("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position : (orig_end_position + 1)] return output_text
def _get_best_indexes(logits, n_best_size): """ Get the n-best logits from a list. """ index_and_score = sorted( enumerate(logits), key=lambda x: x[1], reverse=True ) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """ Compute softmax probability over raw logits. """ if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs if __name__ == "__main__": main()