# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Any, Callable, List, Optional, Tuple
import numpy as np
import torch
from torchvision.datasets import DatasetFolder
import cerebras_pytorch.distributed as dist
from modelzoo.vision.pytorch.dit.input.DiffusionBaseProcessor import (
DiffusionBaseProcessor,
)
from modelzoo.vision.pytorch.input.utils import create_worker_cache
FILE_EXTENSIONS = (".npz", ".npy")
[docs]class CategoricalDataset(torch.utils.data.Dataset):
[docs] def __init__(self, datasets, probs=None, seed=None):
self.datasets = datasets
self.num_datasets = len(datasets)
self.probs = probs
if self.probs is None:
self.probs = [1 / self.num_datasets] * self.num_datasets
if not isinstance(self.probs, torch.Tensor):
self.probs = torch.tensor(self.probs)
assert (
len(self.probs) == self.num_datasets
), f"Probability values(={len(self.probs)}) != number of datasets(={self.num_datasets})"
assert (
torch.sum(self.probs) == 1.0
), f"Probability values don't add up to 1.0"
self.len_datasets = [len(ds) for ds in self.datasets]
self.max_len = max(self.len_datasets)
if seed is None:
# large random number chosen as `high` upper bound
seed = torch.randint(0, 2147483647, (1,), dtype=torch.int64).item()
self.seed = seed
self.generator = None
def __len__(self):
return self.max_len
def __getitem__(self, idx):
if self.generator is None:
self.generator = torch.Generator()
self.generator.manual_seed(self.seed)
# Pick a dataset
ds_id = torch.multinomial(self.probs, 1, generator=self.generator)
ds = self.datasets[ds_id]
# get sample from dataset selected
sample_id = idx % self.len_datasets[ds_id]
return ds[sample_id]
[docs]class ImageNetLatentDataset(DatasetFolder):
[docs] def __init__(
self,
root: str,
split: str,
latent_size: List,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
strict_check: Optional[bool] = False,
):
split_folder = os.path.join(root, split)
self.strict_check = strict_check
self.latent_size = latent_size
super().__init__(
split_folder,
self.loader,
FILE_EXTENSIONS,
transform=transform,
target_transform=target_transform,
is_valid_file=None,
)
def loader(self, path: str):
data = np.load(path)
return data
def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""
Args:
index (int): Index
Returns:
tuple: (sample, target) where target is class_index of the target class.
"""
path, target = self.samples[index]
sample = self.loader(path)
latent = torch.from_numpy(sample["vae_output"])
label = torch.from_numpy(sample["label"])
assert (
list(latent.shape) == self.latent_size
), f"Mismatch between shapes {latent.shape} vs expected shape:{self.latent_size}"
if self.strict_check:
assert (
sample["dest_path"] == path
), f"Mismatch between image and latent files, please check data creation process."
assert (
label == target
), f"Mismatch between labels written to npz file and inferred according to folder structure"
if self.transform is not None:
latent = self.transform(latent)
if self.target_transform is not None:
target = self.target_transform(target)
return latent, target
[docs]class DiffusionLatentImageNet1KProcessor(DiffusionBaseProcessor):
[docs] def __init__(self, params):
super().__init__(params)
if not isinstance(self.data_dir, list):
self.data_dir = [self.data_dir]
self.num_classes = 1000
def create_dataset(self, use_training_transforms=True, split="train"):
if self.use_worker_cache and dist.is_streamer():
data_dir = []
for _dir in self.data_dir:
data_dir.append(create_worker_cache(_dir))
self.data_dir = data_dir
self.check_split_valid(split)
transform, target_transform = self.process_transform()
dataset_list = []
for _dir in self.data_dir:
if not os.path.isdir(os.path.join(_dir, split)):
raise RuntimeError(f"No directory {split} under root dir")
dataset_list.append(
ImageNetLatentDataset(
root=_dir,
latent_size=[
2 * self.latent_channels,
self.latent_height,
self.latent_width,
],
split=split,
transform=transform,
target_transform=target_transform,
)
)
dataset = CategoricalDataset(dataset_list, seed=self.shuffle_seed)
return dataset
if __name__ == "__main__":
import os
import yaml
from modelzoo.vision.pytorch.dit.utils import set_defaults
fpath = os.path.abspath(
os.path.join(
os.path.dirname(__file__),
"../configs/params_dit_small_patchsize_2x2.yaml",
)
)
with open(fpath, "r") as fid:
params = yaml.safe_load(fid)
params = set_defaults(params)
data_obj = DiffusionLatentImageNet1KProcessor(params['train_input'])
dataset = data_obj.create_dataset(
use_training_transforms=True, split=params["train_input"]["split"]
)
print("Dataset features: \n")
print(f"Dataset 0th sample: {dataset[0]}, {dataset[0][0].shape}")
dataloader = data_obj.create_dataloader(dataset, is_training=True)
print("Dataloader features as below: \n")
for ii, data in enumerate(dataloader):
if ii == 1:
break
for k, v in data.items():
print(f"{k} -- {v.shape}, {v.dtype}")
print("----")