Source code for modelzoo.common.pytorch.layers.MultiQueryAttentionLayer

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging

import torch
import torch.nn as nn

from modelzoo.common.pytorch.model_utils.create_initializer import (
    create_initializer,
)

from .AttentionLayer import MultiheadAttention


[docs]class MultiQueryAttention(MultiheadAttention): """Implements the Multi-Query Attention Layer from `Fast Transformer Decoding: One Write-Head is All You Need <https://arxiv.org/abs/1911.02150>` Args: embed_dim (int): Number of input units in each projection output num_heads (int): Number of attention heads. inner_dim (int): Number of output units in attention query/key/value projection. Defaults to ``embed_dim``. dropout (float): Dropout rate for key-query weights. Defaults to 0.0. batch_first (bool): If True, then the input and output tensors are provided as (batch, seq, feature), otherwise the format will be (seq, batch, feature). Default: True (batch, seq, feature). add_bias_kv (bool): If specified, adds bias to the key and value sequences at dim=0. Default: False. add_zero_attn (bool): If specified, adds a new batch of zeros to the key and value sequences at dim=1. Default: False kdim (int): Number of output units in key projection vdim (int): Number of output units in projection use_projection_bias (bool): Whether to use bias in the key, query, and value projections. use_ffn_bias (bool): Whether to use bias in the output projection. attention_initializer (str): Projection kernel initializer. Defaults to ``xavier_uniform``. attention_q_initializer: Query projection kernel initializer. If not specified, the query will be initialized via ``attention_initializer`` output_layer_initializer (str or initializer): If not None, use this initializer for the output transform layer. Defaults to None. bias_initializer (str): Bias initializer. Defaults to ``zeros``. attention_type (str): The attention variant to execute. Currently accepts ``dot_product`` and ``scaled_dot_product``. Defaults to ``scaled_dot_product``. softmax_dtype_fp32 (bool): Use an FP32 softmax implementation. device (optional): Device to create the model parameters on, can be a cuda device or CS device. """
[docs] def __init__( self, embed_dim, num_heads, inner_dim=None, dropout=0.0, batch_first=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, use_projection_bias=None, use_ffn_bias=False, attention_initializer="xavier_uniform", attention_q_initializer=None, output_layer_initializer=None, bias_initializer="zeros", attention_type="scaled_dot_product", scale_qk_dot_by_d=False, softmax_dtype_fp32=True, scale_qk_dot_by_layer_idx=False, device=None, # MQA specific num_kv_groups=1, ): super(MultiQueryAttention, self).__init__( embed_dim=embed_dim, num_heads=num_heads, inner_dim=inner_dim, dropout=dropout, batch_first=batch_first, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, vdim=vdim, kdim=kdim, use_projection_bias=use_projection_bias, use_ffn_bias=use_ffn_bias, attention_initializer=attention_initializer, attention_q_initializer=attention_q_initializer, output_layer_initializer=output_layer_initializer, bias_initializer=bias_initializer, attention_type=attention_type, scale_qk_dot_by_d=scale_qk_dot_by_d, softmax_dtype_fp32=softmax_dtype_fp32, scale_qk_dot_by_layer_idx=scale_qk_dot_by_layer_idx, device=device, ) self.head_dim = self.inner_dim // self.num_heads self.num_kv_groups = num_kv_groups self.per_group_num_heads = self.num_heads // self.num_kv_groups assert ( self.num_heads % self.num_kv_groups == 0 ), f"num_heads has to be a multiple of num_kv_groups but got {self.num_heads} and {self.num_kv_groups}" # assuming only 1 head for key and value projections self.proj_k_dense_layer = nn.Linear( self.kdim, self.num_kv_groups * self.head_dim, bias=use_projection_bias, device=device, ) self.proj_v_dense_layer = nn.Linear( self.vdim, self.num_kv_groups * self.head_dim, bias=use_projection_bias, device=device, ) # reset newly initialized parameters self.__reset_parameters()
def reset_parameters(self): super().reset_parameters() self.__reset_parameters() def __reset_parameters(self): # bias initialization bias_initializer = create_initializer(self.bias_initializer) if self.use_projection_bias: bias_initializer(self.proj_k_dense_layer.bias.data) bias_initializer(self.proj_v_dense_layer.bias.data) # k, v projections weight_initializer = create_initializer(self.initializer) weight_initializer(self.proj_k_dense_layer.weight.data) weight_initializer(self.proj_v_dense_layer.weight.data) def construct_key_vector(self, k, attn_mask=None, key_padding_mask=None): # linear projection k = self.proj_k_dense_layer( k ) # [batch_size, seq_length, self.num_kv_groups * self.head_dim] if self.num_kv_groups == 1: return torch.unsqueeze( k, 2 ) # [batch_size, seq_length, 1, kv_channels] batch_size, seq_length, _ = k.shape # [batch_size, seq_length, self.num_kv_groups, self.head_dim] k = k.reshape(batch_size, seq_length, self.num_kv_groups, self.head_dim) return k def construct_value_vector(self, v, attn_mask=None, key_padding_mask=None): # linear projection v = self.proj_v_dense_layer( v ) # [batch_size, seq_length, self.num_kv_groups * self.head_dim] if self.num_kv_groups == 1: return torch.unsqueeze( v, 1 ) # [batch_size, 1, seq_length, kv_channels] batch_size, seq_length, _ = v.shape v = v.reshape(batch_size, seq_length, self.num_kv_groups, self.head_dim) v = v.transpose(2, 1) # [batch_size, self.num_kv_groups, seq_length, self.head_dim] return v def expand_kv_over_group_dim(self, x): # expand k/v over dimension batch_size, _, seq_length, _ = x.shape x = x.unsqueeze( 2 ) # [batch_size, self.num_kv_groups, 1, seq_length, self.head_dim] # expand over per_group_num_heads x = x.expand( batch_size, self.num_kv_groups, self.per_group_num_heads, seq_length, self.head_dim, ) x = x.reshape(batch_size, self.num_heads, seq_length, self.head_dim) return x def calculate_attention_logits(self, q, k, layer_idx): if self.num_kv_groups > 1: k = self.expand_kv_over_group_dim(k) return super().calculate_attention_logits(q, k, layer_idx) def calculate_attention_output(self, attention_scores, v): if self.num_kv_groups > 1: v = self.expand_kv_over_group_dim(v) return super().calculate_attention_output(attention_scores, v) def check_extra_params(params): if "num_kv_groups" not in params: params["num_kv_groups"] = 1 logging.warning( "num_kv_groups is not set in the yaml, it is set to 1 by default. " "Please provide a value if this is not intended." )