# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
from modelzoo.common.pytorch.model_utils.checkpoint_converters.base_converter import (
BaseConfigConverter,
ConversionRule,
EquivalentSubkey,
FormatVersions,
)
from modelzoo.common.pytorch.model_utils.checkpoint_converters.llama import (
ConfigConverter_LLaMa_HF_CS21,
Converter_LlamaForCausalLM_HF_CS21,
Converter_LlamaModel_HF_CS21,
)
[docs]class Converter_MistralModel_HF_CS21(Converter_LlamaModel_HF_CS21):
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-2.1"))
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_Mistral_HF_CS21
@classmethod
def converter_note(cls) -> str:
return (
f"{cls.formats()[0]} MistralModel <-> {cls.formats()[1]} GPT2LMHeadModel (configured as "
f"Mistral)\nThe HF model doesn't contain a language model head while the CS one does. "
f"When converting to CS, the exported checkpoint will contain a language model head "
f"initialized to default random values. When converting to HF, the language model head "
f"will be dropped."
).format(cls.formats()[0], cls.formats()[1])
[docs]class Converter_MistralForCausalLM_HF_CS21(Converter_LlamaForCausalLM_HF_CS21):
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-2.1"))
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_Mistral_HF_CS21
@classmethod
def converter_note(cls) -> str:
return "{} MistralForCausalLM <-> {} GPT2LMHeadModel (configured as Mistral)".format(
cls.formats()[0], cls.formats()[1]
)
[docs]class ConfigConverter_Mistral_HF_CS21(ConfigConverter_LLaMa_HF_CS21):
[docs] def __init__(self):
self.model_type = "mistral"
super().__init__()
self.rules = [
ConversionRule(
[
EquivalentSubkey(
"sliding_window", "attention_sliding_window_length"
)
],
action=self.replaceKey,
),
*self.rules,
]
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-2.1"))