Source code for modelzoo.common.pytorch.model_utils.checkpoint_converters.t5

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from typing import Tuple

from modelzoo.common.pytorch.model_utils.checkpoint_converters.base_converter import (
    BaseCheckpointConverter_CS_CS,
    BaseCheckpointConverter_HF_CS,
    BaseConfigConverter,
    BaseConfigConverter_CS_CS,
    BaseConfigConverter_HF_CS,
    ConfigConversionError,
    ConversionRule,
    EquivalentSubkey,
    FormatVersions,
)
from modelzoo.common.pytorch.model_utils.checkpoint_converters.helper import (
    Build_HF_CS_Converter_WithOptionalModel,
    convert_use_rms_layer_norm_helper,
)


[docs]class Converter_T5_CS16_CS17(BaseCheckpointConverter_CS_CS):
[docs] def __init__(self): super().__init__() self.rules = [ ConversionRule( [ r"(?:encoder|decoder)_", EquivalentSubkey( "token_embedding", "embeddings.word_embeddings" ), r"\.weight", ], action=self.replaceKey, ), ConversionRule( [r"(?:encoder|decoder)\.embed_tokens\.weight",], exists="left" ), ConversionRule( [ r"(?:encoder|decoder)", EquivalentSubkey( ".absolute_position_embedding", "_embeddings.position_embeddings", ), # Fixed position embeddings don't have a .weight suffix while learned absolute # does r"(?:\.weight|)", ], action=self.replaceKey, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey("layer.0.SelfAttention", "self_attn"), r"\.", EquivalentSubkey("q", "proj_q_dense_layer"), r"\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey("layer.0.SelfAttention", "self_attn"), r"\.", EquivalentSubkey("k", "proj_k_dense_layer"), r"\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey("layer.0.SelfAttention", "self_attn"), r"\.", EquivalentSubkey("v", "proj_v_dense_layer"), r"\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey("layer.0.SelfAttention", "self_attn"), r"\.", EquivalentSubkey("o", "proj_output_dense_layer"), r"\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey("layer.0.layer_norm", "norm1"), r"\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey("layer.1.layer_norm", "norm2"), r"\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey("layer.2.layer_norm", "norm3"), r"\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [ r"decoder\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey( "layer.1.EncDecAttention", "multihead_attn" ), r"\.", EquivalentSubkey("q", "proj_q_dense_layer"), r"\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [ r"decoder\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey( "layer.1.EncDecAttention", "multihead_attn" ), r"\.", EquivalentSubkey("k", "proj_k_dense_layer"), r"\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [ r"decoder\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey( "layer.1.EncDecAttention", "multihead_attn" ), r"\.", EquivalentSubkey("v", "proj_v_dense_layer"), r"\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [ r"decoder\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey( "layer.1.EncDecAttention", "multihead_attn" ), r"\.", EquivalentSubkey("o", "proj_output_dense_layer"), r"\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [ # pylint: disable=line-too-long r"(?:encoder|decoder)\.block\.\d+\.layer\.0\.SelfAttention\.relative_attention_bias\.(?:weight|bias)" ], exists="left", action=self.convert_relative_attention_bias_cs16_to_cs17, ), ConversionRule( [ # pylint: disable=line-too-long r"relative_position_(?:encoder|decoder)\.relative_attention_bias\.(?:weight|bias)" ], exists="right", action=self.convert_relative_attention_bias_cs17_to_cs16, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey( "layer.1.DenseReluDense.wi", "ffn.ffn.0.linear_layer" ), r"\.(?:weight|bias)", ], action=self.convert_dense_layer, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey( "layer.1.DenseReluDense.wi_0", "ffn.ffn.0.linear_layer_for_glu", ), r"\.(?:weight|bias)", ], action=self.convert_dense_layer, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey( "layer.1.DenseReluDense.wi_1", "ffn.ffn.0.linear_layer" ), r"\.(?:weight|bias)", ], action=self.convert_dense_layer, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey( "layer.1.DenseReluDense.wo", "ffn.ffn.1.linear_layer" ), r"\.(?:weight|bias)", ], action=self.convert_dense_layer, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey( "layer.2.DenseReluDense.wi", "ffn.ffn.0.linear_layer" ), r"\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey( "layer.2.DenseReluDense.wi_0", "ffn.ffn.0.linear_layer_for_glu", ), r"\.(?:weight|bias)", ], action=self.convert_dense_layer, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey( "layer.2.DenseReluDense.wi_1", "ffn.ffn.0.linear_layer" ), r"\.(?:weight|bias)", ], action=self.convert_dense_layer, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("block", "layers"), r"\.\d+\.", EquivalentSubkey( "layer.2.DenseReluDense.wo", "ffn.ffn.1.linear_layer" ), r"\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [ r"(?:encoder|decoder)\.", EquivalentSubkey("final_layer_norm", "norm"), r"\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [r"lm_head\.(?:weight|bias)"], action=self.replaceKey, ), ]
def convert_dense_layer( self, old_key, new_key, old_state_dict, new_state_dict, from_index, action_fn_args, ): if from_index == 0: self.replaceKey( old_key, new_key, old_state_dict, new_state_dict, from_index ) else: # When going from CS -> HF, we need to figure out if cross # attention is enabled or not old_key_split = old_key.split(".") multihead_q_key = ( '.'.join(old_key_split[: old_key_split.index("ffn")]) + ".multihead_attn.proj_q_dense_layer.weight" ) cross_attention_enabled = multihead_q_key in old_state_dict if cross_attention_enabled: layer_names = new_key.split(".") layer_names[layer_names.index("layer") + 1] = "2" new_key = '.'.join(layer_names) # The ".linear_layer" needs to be mapped differently if we are using # a gated attention: is_gated_act = ( action_fn_args["configs"][0] .get("feed_forward_proj", "relu") .startswith("gated-") ) if is_gated_act: wi_position = new_key.find(".wi.") if wi_position != -1: new_key = ( new_key[:wi_position] + ".wi_1." + new_key[wi_position + len(".wi.") :] ) new_state_dict[new_key] = old_state_dict[old_key] def convert_relative_attention_bias_cs16_to_cs17( self, old_key, new_key, old_state_dict, new_state_dict, from_index, action_fn_args, ): assert ( from_index == 0 ), "Shouldn't have matched the following key: {}".format(old_key) if old_key.find(".block.0.") != -1: module = old_key[: old_key.find(".")] # encoder or decoder layer_type = old_key[old_key.rfind(".") + 1 :] # bias or weight key_prefix = new_key[: new_key.find(module)] new_key = "{}relative_position_{}.relative_attention_bias.{}".format( key_prefix, module, layer_type ) new_state_dict[new_key] = old_state_dict[old_key] def convert_relative_attention_bias_cs17_to_cs16( self, old_key, new_key, old_state_dict, new_state_dict, from_index, action_fn_args, ): assert ( from_index == 1 ), "Shouldn't have matched the following key: {}".format(old_key) # CS 16 stored relative attention bias on every single transformer block event though they # weren't used. Extract the text after 'relative_position_' and before the following '.' # into module. relative_position_start = old_key.find("relative_position_") assert relative_position_start != -1, "Invalid key: {}".format(old_key) module = old_key[ relative_position_start + len("relative_position_") : old_key.find( ".", relative_position_start ) ] layer_type = old_key[old_key.rfind(".") + 1 :] num_layers = 0 while ( "{}encoder.layers.{}.self_attn.proj_q_dense_layer.weight".format( old_key[:relative_position_start], num_layers ) in old_state_dict ): num_layers += 1 for idx in range(num_layers): new_key = "{}.block.{}.layer.0.SelfAttention.relative_attention_bias.{}".format( module, idx, layer_type ) new_state_dict[new_key] = old_state_dict[old_key]
[docs] def pre_checkpoint_convert( self, input_checkpoint, output_checkpoint, configs: Tuple[dict, dict], from_index: int, ): # Don't copy non model keys like optimizer state: logging.warning( "The T5 model changed significantly between {} and {}. As a result, the" " optimizer state won't be included in the converted checkpoint.".format( *self.formats() ) ) output_checkpoint["model"] = {}
@staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("cs-1.6"), FormatVersions("cs-1.7")) @classmethod def converter_note(cls) -> str: return "T5ForConditionalGeneration class" @staticmethod def get_config_converter_class() -> BaseConfigConverter: return ConfigConverter_T5_CS16_CS17
[docs]class Converter_T5_CS17_CS18(BaseCheckpointConverter_CS_CS):
[docs] def __init__(self): super().__init__() self.rules = [ # Catch checkpoints from Pytorch 2.0 API ConversionRule([r"(?!model\.).*"], action=self.replaceKey,), # Catch checkpoints from 1.7/1.8 ConversionRule( [EquivalentSubkey("", "model."), ".*"], action=self.replaceKey, ), ]
@staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("cs-1.7"), FormatVersions("cs-1.8")) @classmethod def converter_note(cls) -> str: return "T5ForConditionalGeneration class" @staticmethod def get_config_converter_class() -> BaseConfigConverter: return ConfigConverter_T5_CS17_CS18
[docs]class Converter_T5_CS16_CS18(BaseCheckpointConverter_CS_CS):
[docs] def __init__(self): super().__init__() self.rules = [ # Catch checkpoints from Pytorch 2.0 API ConversionRule([Converter_T5_CS16_CS17(),], action=None,), # Catch checkpoints from 1.7/1.8 ConversionRule( [EquivalentSubkey("", "model."), Converter_T5_CS16_CS17()], action=None, ), ]
[docs] def pre_checkpoint_convert( self, input_checkpoint, output_checkpoint, configs: Tuple[dict, dict], from_index: int, ): # Don't copy non model keys like optimizer state: logging.warning( "The T5 model changed significantly between {} and {}. As a result, the" " optimizer state won't be included in the converted checkpoint.".format( *self.formats() ) ) output_checkpoint["model"] = {}
@staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("cs-1.6"), FormatVersions("cs-1.8")) @classmethod def converter_note(cls) -> str: return "T5ForConditionalGeneration class" @staticmethod def get_config_converter_class() -> BaseConfigConverter: return ConfigConverter_T5_CS16_CS18
[docs]class ConfigConverter_T5_CS16_CS17(BaseConfigConverter_CS_CS):
[docs] def __init__(self): super().__init__() # Config didn't change between 1.6 and 1.7. Copy all keys. self.rules = [ ConversionRule([".*"], action=BaseConfigConverter.replaceKey), ]
@staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("cs-1.6"), FormatVersions("cs-1.7"))
[docs]class ConfigConverter_T5_CS17_CS18(BaseConfigConverter_CS_CS):
[docs] def __init__(self): super().__init__() # Only thing that changed between 1.7 and 1.8 is flipped # use_pre_encoder_decoder_layer_norm self.rules = [ ConversionRule( ["use_pre_encoder_decoder_layer_norm"], action=self.flip_use_pre_encoder_decoder_layer_norm, ), ConversionRule([".*"], action=BaseConfigConverter.replaceKey), ]
@classmethod def flip_use_pre_encoder_decoder_layer_norm( cls, old_key, new_key, old_state_dict, new_state_dict, from_index, action_fn_args, ): new_state_dict[new_key] = not old_state_dict[old_key] @staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("cs-1.7"), FormatVersions("cs-1.8"))
[docs]class ConfigConverter_T5_CS16_CS18(ConfigConverter_T5_CS16_CS17,):
[docs] def __init__(self): super().__init__() self.rules = [ ConversionRule( ["use_pre_encoder_decoder_layer_norm"], action=ConfigConverter_T5_CS17_CS18.flip_use_pre_encoder_decoder_layer_norm, ), *self.rules, ]
@staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("cs-1.6"), FormatVersions("cs-1.8"))
### T5ForConditional Generation HF <-> CS1.7
[docs]class Converter_T5_HF_CS17( Converter_T5_CS16_CS17, BaseCheckpointConverter_HF_CS ):
[docs] def __init__(self): super().__init__() self.rules = [ ConversionRule( [ r"(?:encoder|decoder)", EquivalentSubkey( ".embed_tokens", "_embeddings.word_embeddings" ), r"\.weight", ], action=self.convert_embeddings, ), ConversionRule([r"shared\.weight"], exists="left"), ConversionRule( [ # pylint: disable=line-too-long r"relative_position_(?:encoder|decoder)\.relative_attention_bias\.(?:weight|bias)" ], exists="right", action=self.convert_relative_attention_bias_cs17_to_hf, ), ConversionRule( [ # pylint: disable=line-too-long r"decoder\.block\.\d+\.layer\.1\.EncDecAttention\.relative_attention_bias\.(?:weight|bias)" ], exists="left", action=None, ), *self.rules, ]
def convert_embeddings( self, old_key, new_key, old_state_dict, new_state_dict, from_index, action_fn_args, ): self.replaceKey( old_key, new_key, old_state_dict, new_state_dict, from_index ) if from_index == 1: # HF stores a copy of the word embeddings at the top level in a variable named 'shared' self.replaceKey( old_key, "shared.weight", old_state_dict, new_state_dict, from_index, ) def convert_relative_attention_bias_cs17_to_hf( self, old_key, new_key, old_state_dict, new_state_dict, from_index, action_fn_args, ): assert ( from_index == 1 ), "Shouldn't have matched the following key: {}".format(old_key) # CS 16 stored relative attention bias on every single transformer block event though they # weren't used relative_position_start = old_key.find("relative_position_") assert relative_position_start != -1, "Invalid key: {}".format(old_key) module = old_key[ relative_position_start + len("relative_position_") : old_key.find( ".", relative_position_start ) ] layer_type = old_key[old_key.rfind(".") + 1 :] new_key = "{}.block.0.layer.0.SelfAttention.relative_attention_bias.{}".format( module, layer_type ) new_state_dict[new_key] = old_state_dict[old_key]
[docs] def pre_model_convert( self, old_state_dict, new_state_dict, configs, from_index, drop_unmatched_keys, ): if from_index == 1: assert ( "encoder_embeddings.position_embeddings.weight" not in old_state_dict and "decoder_embeddings.position_embeddings.weight" not in old_state_dict ), ( "Cannot convert to HF because it doesn't support " "position_embedding_type=\"learned_absolute\"" ) assert ( "encoder_embeddings.position_embeddings" not in old_state_dict and "decoder_embeddings.position_embeddings" not in old_state_dict ), "Cannot convert to HF because it doesn't support position_embedding_type=\"fixed\"" assert ( "relative_position_encoder.relative_attention_bias.weight" in old_state_dict and "relative_position_decoder.relative_attention_bias.weight" in old_state_dict ), "Cannot convert to HF because it doesn't support position_embedding_type=None" if ( configs[1]["model"]["share_embedding_weights"] and configs[1]["model"]["share_encoder_decoder_embedding"] and old_state_dict.get( "encoder_embeddings.word_embeddings.weight", 0 ) is None ): old_state_dict[ "encoder_embeddings.word_embeddings.weight" ] = old_state_dict["lm_head.weight"] if ( configs[1]["model"]["share_embedding_weights"] and configs[1]["model"]["share_encoder_decoder_embedding"] and old_state_dict.get( "decoder_embeddings.word_embeddings.weight", 0 ) is None ): old_state_dict[ "decoder_embeddings.word_embeddings.weight" ] = old_state_dict["lm_head.weight"]
[docs] def pre_checkpoint_convert( self, *args, ): return BaseCheckpointConverter_HF_CS.pre_checkpoint_convert( self, *args, )
[docs] def extract_model_dict(self, *args): return BaseCheckpointConverter_HF_CS.extract_model_dict(self, *args)
@staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("hf"), FormatVersions("cs-1.7")) @classmethod def converter_note(cls) -> str: return "{} <-> {} T5ForConditionalGeneration".format( cls.formats()[0], cls.formats()[1] ) @staticmethod def get_config_converter_class() -> BaseConfigConverter: return ConfigConverter_T5_HF_CS17
[docs]class Converter_T5_HF_CS18(BaseCheckpointConverter_HF_CS):
[docs] def __init__(self): super().__init__() self.rules = [ # Catch checkpoints from Pytorch 2.0 API ConversionRule([Converter_T5_HF_CS17(),], action=None,), # Catch checkpoints from 1.7/1.8 ConversionRule( [EquivalentSubkey("", "model."), Converter_T5_HF_CS17()], action=None, ), ]
@staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("hf"), FormatVersions("cs-1.8")) @classmethod def converter_note(cls) -> str: return "{} <-> {} T5ForConditionalGeneration".format( cls.formats()[0], cls.formats()[1] ) @staticmethod def get_config_converter_class() -> BaseConfigConverter: return ConfigConverter_T5_HF_CS18
[docs]class ConfigConverter_T5_HF_CS17(BaseConfigConverter_HF_CS):
[docs] def __init__(self): super().__init__() self.rules = [ ConversionRule( ["model_type"], action=BaseConfigConverter.assert_factory_fn(0, "t5"), ), # Embedding ConversionRule( [EquivalentSubkey("vocab_size", "src_vocab_size")], action=self.replaceKey, ), ConversionRule(["d_model"], action=self.replaceKey), ConversionRule(["d_kv"], action=self.replaceKey), ConversionRule(["d_ff"], action=self.replaceKey), ConversionRule( [EquivalentSubkey("num_layers", "encoder_num_hidden_layers")], action=self.replaceKey, ), ConversionRule( [ EquivalentSubkey( "num_decoder_layers", "decoder_num_hidden_layers" ) ], action=self.replaceKey, ), ConversionRule(["num_heads"], action=self.replaceKey), ConversionRule( ["use_projection_bias_in_attention"], action=BaseConfigConverter.assert_factory_fn(1, False), ), ConversionRule( ["relative_attention_num_buckets"], action=self.replaceKey, ), ConversionRule( [ EquivalentSubkey( "tie_word_embeddings", "share_embedding_weights" ) ], action=self.replaceKey, ), ConversionRule( ["is_encoder_decoder"], action=BaseConfigConverter.assert_factory_fn(0, True), ), ConversionRule( ["relative_attention_max_distance"], action=BaseConfigConverter.assert_factory_fn(0, 128), ), ConversionRule(["dropout_rate"], action=self.replaceKey), ConversionRule(["layer_norm_epsilon"], action=self.replaceKey,), ConversionRule( [EquivalentSubkey("feed_forward_proj", "encoder_nonlinearity")], action=self.convert_nonlinearity, ), ConversionRule( ["decoder_nonlinearity"], action=self.assert_decoder_nonlinearity, ), ConversionRule( ["position_embedding_type"], exists="right", action=BaseConfigConverter.assert_factory_fn(1, "relative"), ), ConversionRule( ["(?:src|tgt)_max_position_embeddings"], exists="right", action=None, ), ConversionRule( ["use_dropout_outside_residual_path"], exists="right", action=BaseConfigConverter.assert_factory_fn(1, True), ), ConversionRule( ["share_encoder_decoder_embedding"], exists="right", action=BaseConfigConverter.assert_factory_fn(1, True), ), ConversionRule( ["use_pre_encoder_decoder_dropout"], exists="right", action=BaseConfigConverter.assert_factory_fn(1, False), ), # use_pre_encoder_decoder_layer_norm=False in CS <= 1.7. This flag # was flipped in 1.8 ConversionRule( ["use_pre_encoder_decoder_layer_norm"], exists="right", action=BaseConfigConverter.assert_factory_fn(1, False), ), ConversionRule( ["use_ffn_bias"], exists="right", action=BaseConfigConverter.assert_factory_fn(1, False), ), ConversionRule( ["use_transformer_initialization"], exists="right", action=BaseConfigConverter.assert_factory_fn(1, False), ), ] self.pre_convert_defaults[0].update( { "vocab_size": 32128, "d_model": 512, "d_kv": 64, "d_ff": 2048, "num_layers": 6, "num_heads": 8, "relative_attention_num_buckets": 32, "relative_attention_max_distance": 128, "dropout_rate": 0.1, "layer_norm_epsilon": 1e-6, "initializer_factor": 1, "feed_forward_proj": "relu", "tie_word_embeddings": True, } ) self.pre_convert_defaults[1].update( { "use_projection_bias_in_attention": False, "relative_attention_num_buckets": 32, "share_embedding_weights": True, "use_t5_layer_norm": True, "layer_norm_epsilon": 1.0e-5, "position_embedding_type": "relative", "use_dropout_outside_residual_path": True, "share_encoder_decoder_embedding": True, "use_pre_encoder_decoder_dropout": False, "use_pre_encoder_decoder_layer_norm": False, "use_ffn_bias": False, "use_transformer_initialization": False, }, ) self.post_convert_defaults[0].update({"model_type": "t5"}) self.post_convert_defaults[1].update( { "src_max_position_embeddings": 512, "tgt_max_position_embeddings": 512, }, )
def convert_nonlinearity( self, old_key, new_key, old_state_dict, new_state_dict, from_index, action_fn_args, ): activation = old_state_dict[old_key] if activation.startswith("gated-"): activation = activation[6:] if from_index == 0 and old_state_dict[old_key].startswith("gated-"): gated_hf2cs = {"silu": "swiglu", "relu": "reglu", "gelu": "geglu"} assert activation in gated_hf2cs activation = gated_hf2cs[activation] elif from_index == 1 and activation.endswith("glu"): gated_cs2hf = { "swiglu": "gated-silu", "reglu": "gated-relu", "geglu": "gated-gelu", } assert activation in gated_cs2hf activation = gated_cs2hf[activation] new_state_dict[new_key] = activation if from_index == 0: new_state_dict["decoder_nonlinearity"] = activation def assert_decoder_nonlinearity( self, old_key, new_key, old_state_dict, new_state_dict, from_index, action_fn_args, ): if old_state_dict["encoder_nonlinearity"] != old_state_dict[old_key]: raise ConfigConversionError( f"Encoder & Decoder nonlinearities must be the same in HF model. " f"Got: {old_state_dict['encoder_nonlinearity']} vs {old_state_dict[old_key]}" ) @staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("hf"), FormatVersions("cs-1.7")) def pre_config_convert( self, config, from_index, ): config = super().pre_config_convert(config, from_index) if from_index == 1: if "tgt_vocab_size" in config: if ( config["tgt_vocab_size"] is not None and config["tgt_vocab_size"] != config["src_vocab_size"] ): raise ConfigConversionError( "HF implementation doesn't allow tgt_vocab_size != src_vocab_size" ) if "relu_dropout_rate" in config: if ( config["relu_dropout_rate"] is not None and config["relu_dropout_rate"] != config["dropout_rate"] ): raise ConfigConversionError( "HF implementation doesn't allow relu_dropout_rate != dropout_rate" ) return config
[docs]class ConfigConverter_T5_HF_CS18(ConfigConverter_T5_HF_CS17):
[docs] def __init__(self): super().__init__() self.rules = [ # CS 1.8 flipped the use_pre_encoder_decoder_layer_norm param ConversionRule( ["use_pre_encoder_decoder_layer_norm"], exists="right", action=BaseConfigConverter.assert_factory_fn(1, True), ), *self.rules, ] self.pre_convert_defaults[1][ "use_pre_encoder_decoder_layer_norm" ] = True
@staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("hf"), FormatVersions("cs-1.8"))
[docs]class Converter_T5_CS18_CS20(BaseCheckpointConverter_CS_CS):
[docs] def __init__(self): super().__init__() # Model didn't change between 1.8/1.9 and 2.0. Copy all keys. self.rules = [ # Don't copy encoder/decoder word embeddings or lm_head due to tying # These props will be handled in the `post_model_convert` ConversionRule( ["(?:model.|)", "lm_head", "\.weight",], action=None, ), ConversionRule( [ "(?:model.|)", "encoder_embeddings.word_embeddings", "\.weight", ], action=None, ), ConversionRule( [ "(?:model.|)", "decoder_embeddings.word_embeddings", "\.weight", ], action=None, ), ConversionRule([".*"], action=self.replaceKey), ]
[docs] def post_model_convert( self, old_state_dict, new_state_dict, configs, from_index, drop_unmatched_keys, key_prefix="", ): cs_config = configs[1] if "decoder_embeddings.word_embeddings.weight" in old_state_dict: model_prefix = "" elif ( "model.decoder_embeddings.word_embeddings.weight" in old_state_dict ): model_prefix = "model." else: raise KeyError( "Unable to find decoder_embeddings.word_embeddings.weight in checkpoint" ) lm_head = old_state_dict[f"{model_prefix}lm_head.weight"] decoder_embed = old_state_dict[ f"{model_prefix}decoder_embeddings.word_embeddings.weight" ] encoder_embed = old_state_dict[ f"{model_prefix}encoder_embeddings.word_embeddings.weight" ] if cs_config["model"].get( "share_encoder_decoder_embedding", True ) and cs_config["model"].get("share_embedding_weights", True): not_none = list( filter( lambda e: e is not None, [lm_head, decoder_embed, encoder_embed], ) ) if not all(not_none[0].equal(e) for e in not_none): logging.warning( "When encoder-decoder embeddings & lm_head are tied, all " "tensors should be the same. However, there is a conflict " "between some of the tensors. As a result, the output " "checkpoint may be inconsistent." ) if len(not_none) > 0: lm_head = not_none[0] decoder_embed = not_none[0] encoder_embed = not_none[0] if cs_config["model"].get("share_embedding_weights", True): if lm_head is None: lm_head = decoder_embed if decoder_embed is None: decoder_embed = lm_head if cs_config["model"].get("share_encoder_decoder_embedding", True): if encoder_embed is None: encoder_embed = decoder_embed if decoder_embed is None: decoder_embed = encoder_embed new_state_dict[f"{model_prefix}lm_head.weight"] = lm_head new_state_dict[ f"{model_prefix}decoder_embeddings.word_embeddings.weight" ] = decoder_embed new_state_dict[ f"{model_prefix}encoder_embeddings.word_embeddings.weight" ] = encoder_embed # Finalize checkpoint: super().post_model_convert( old_state_dict, new_state_dict, configs, from_index, drop_unmatched_keys, key_prefix=key_prefix, )
@classmethod def converter_note(cls) -> str: return "T5ForConditionalGeneration class" @staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("cs-1.8", "cs-1.9"), FormatVersions("cs-2.0")) @staticmethod def get_config_converter_class() -> BaseConfigConverter: return ConfigConverter_T5_CS18_CS20
[docs]class ConfigConverter_T5_CS18_CS20(BaseConfigConverter_CS_CS):
[docs] def __init__(self): super().__init__() # Only difference between 1.8/1.9 and 2.0 is introduction of norm_type self.rules = [ ConversionRule( [EquivalentSubkey("use_t5_layer_norm", "norm_type")], action=self.convert_use_t5_layer_norm, ), ConversionRule([".*"], action=self.replaceKey), ]
def convert_use_t5_layer_norm(self, *args): convert_use_rms_layer_norm_helper(self, *args) @staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("cs-1.8", "cs-1.9"), FormatVersions("cs-2.0"))
[docs]class Converter_T5_HF_CS20(Converter_T5_HF_CS18): @staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("hf"), FormatVersions("cs-2.0")) @staticmethod def get_config_converter_class() -> BaseConfigConverter: return ConfigConverter_T5_HF_CS20
[docs]class ConfigConverter_T5_HF_CS20(ConfigConverter_T5_HF_CS18):
[docs] def __init__(self): super().__init__() self.rules = [ ConversionRule( ["norm_type"], action=BaseConfigConverter.assert_factory_fn(1, "rmsnorm"), ), *self.rules, ] del self.pre_convert_defaults[1]["use_t5_layer_norm"] self.pre_convert_defaults[1]["norm_type"] = "rmsnorm" self.post_convert_defaults[1]["norm_type"] = "rmsnorm"
@staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("hf"), FormatVersions("cs-2.0"))
########################################################### # In CS 2.1, we refactored the embedding layer. # CS 2.0 <> CS 2.1, and HF <> CS 2.1 converters: ###########################################################
[docs]class Converter_T5_CS20_CS21(BaseCheckpointConverter_CS_CS):
[docs] def __init__(self): super().__init__() self.rules = [ # Refactored embeddings: ConversionRule( [ "(?:model\.|)", "(?:encoder|decoder)_embeddings\.", EquivalentSubkey( "position_embeddings.weight", "position_embeddings.embed.weight", ), ], action=self.replaceKey, ), ConversionRule( [ "(?:model\.|)", "(?:encoder|decoder)_embeddings\.", EquivalentSubkey( "position_embeddings", "position_embeddings.fpe", ), ], action=self.replaceKey, ), ConversionRule( [ "(?:model\.|)", EquivalentSubkey( "relative_position_encoder", "encoder_embeddings.position_embed_helper", ), "\.relative_attention_bias", "\.(?:weight|bias)", ], action=self.replaceKey, ), ConversionRule( [ "(?:model\.|)", EquivalentSubkey( "relative_position_decoder", "decoder_embeddings.position_embed_helper", ), "\.relative_attention_bias", "\.(?:weight|bias)", ], action=self.replaceKey, ), # T5 <= CS 2.0 didn't support ALIBI or RoPE # Copy everything else ConversionRule([".*"], action=self.replaceKey), ]
@classmethod def converter_note(cls) -> str: return "T5ForConditionalGeneration class" @staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("cs-2.0"), FormatVersions("cs-2.1")) @staticmethod def get_config_converter_class() -> BaseConfigConverter: return ConfigConverter_T5_CS20_CS21
[docs]class ConfigConverter_T5_CS20_CS21(BaseConfigConverter_CS_CS):
[docs] def __init__(self): super().__init__() # No differences in config self.rules = [ ConversionRule([".*"], action=self.replaceKey), ]
@staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("cs-2.0"), FormatVersions("cs-2.1"))
[docs]class ConfigConverter_T5_HF_CS21(ConfigConverter_T5_HF_CS20): "CS 2.1 config is the same as CS 2.0" @staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("hf"), FormatVersions("cs-2.1"))
[docs]class Converter_T5_WithoutOptionalModel_HF_CS21(Converter_T5_HF_CS17):
[docs] def __init__(self): super().__init__() self.rules = [ ConversionRule( [ "(?:encoder|decoder)\.block\.\d+\.layer\.0\.SelfAttention\.relative_attention_bias\.(?:weight|bias)" ], exists="left", action=self.convert_relative_attention_bias_hf_to_cs21, ), ConversionRule( [ "(?:encoder|decoder)_embeddings\.position_embed_helper\.relative_attention_bias\.(?:weight|bias)" ], exists="right", action=self.convert_relative_attention_bias_cs17_to_hf, ), *self.rules, ]
def convert_relative_attention_bias_hf_to_cs21( self, old_key, new_key, old_state_dict, new_state_dict, from_index, action_fn_args, ): assert ( from_index == 0 ), "Shouldn't have matched the following key: {}".format(old_key) if old_key.find(".block.0.") != -1: module = old_key[: old_key.find(".")] # encoder or decoder layer_type = old_key[old_key.rfind(".") + 1 :] # bias or weight key_prefix = new_key[: new_key.find(module)] new_key = "{}{}_embeddings.position_embed_helper.relative_attention_bias.{}".format( key_prefix, module, layer_type ) new_state_dict[new_key] = old_state_dict[old_key] def convert_relative_attention_bias_cs17_to_hf( self, old_key, new_key, old_state_dict, new_state_dict, from_index, action_fn_args, ): assert ( from_index == 1 ), "Shouldn't have matched the following key: {}".format(old_key) # HF stored relative attention bias on every single transformer block event though they weren't used if old_key.find("encoder_embeddings.position_embed_helper.") != -1: module = "encoder" elif old_key.find("decoder_embeddings.position_embed_helper.") != -1: module = "decoder" else: assert False, "Invalid key: {}".format(old_key) layer_type = old_key[old_key.rfind(".") + 1 :] new_key = "{}.block.0.layer.0.SelfAttention.relative_attention_bias.{}".format( module, layer_type ) new_state_dict[new_key] = old_state_dict[old_key] # CS 17 converter has custom pre_model_convert logic which CS21 doesn't need
[docs] def pre_model_convert( self, old_state_dict, new_state_dict, configs, from_index, drop_unmatched_keys, ): pass
@staticmethod def formats() -> Tuple[FormatVersions, FormatVersions]: return (FormatVersions("hf"), FormatVersions("cs-2.1")) @staticmethod def get_config_converter_class() -> BaseConfigConverter: return ConfigConverter_T5_HF_CS21
Converter_T5_HF_CS21 = Build_HF_CS_Converter_WithOptionalModel( "Converter_T5_HF_CS21", Converter_T5_WithoutOptionalModel_HF_CS21, derived_class=Converter_T5_WithoutOptionalModel_HF_CS21, )