# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""HuggingFace Eli5 Dataset"""
import os
from datasets import load_dataset
from transformers import AutoTokenizer
from modelzoo.transformers.data_processing.huggingface.CSDataCollatorForLanguageModeling import (
CSDataCollatorForLanguageModeling,
)
# Suppress warnings about using fast tokenizers
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
[docs]def HuggingFace_Eli5(split="train", num_workers=8, sequence_length=128):
# based on https://huggingface.co/docs/transformers/tasks/language_modeling
eli5 = load_dataset("eli5", split="train_asks[:5000]")
eli5 = eli5.train_test_split(test_size=0.2, seed=0)
eli5 = eli5[split] # Select dataset split
eli5 = eli5.flatten()
tokenizer = AutoTokenizer.from_pretrained("distilgpt2", use_fast=True)
tokenizer.add_bos_token = (
False # BOS token added in CSDataCollatorForLanguageModeling
)
def preprocess_function(examples):
return tokenizer([" ".join(x) for x in examples["answers.text"]])
tokenized_eli5 = eli5.map(
preprocess_function,
batched=True,
num_proc=num_workers,
remove_columns=eli5.column_names,
)
block_size = sequence_length
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {
k: sum(examples[k], []) for k in examples.keys()
}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of block_size.
result = {
k: [
t[i : i + block_size]
for i in range(0, total_length, block_size)
]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
dataset = tokenized_eli5.map(
group_texts, batched=True, num_proc=num_workers
)
tokenizer.pad_token = tokenizer.eos_token
data_collator = CSDataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=False
)
return dataset, data_collator