Source code for modelzoo.transformers.pytorch.gpt2.utils

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


[docs]def set_attention_params(params): ''' Set attention related params :param params: model_params :return: ''' # Attention softmax is fp32 by default. params["model"]["attention_softmax_fp32"] = True if params["runconfig"].get("precision_opt_level", 1) == 2: params["model"]["attention_softmax_fp32"] = False if ( params["model"].get("fp16_type", "bfloat16") == "cbfloat16" and params["runconfig"].get("precision_opt_level", 1) == 1 ): params["model"]["attention_softmax_fp32"] = False
[docs]def set_defaults(params): """ Update any missing parameters in the params dictionary with default values Args: params: The dictionary containing the params """ if ( params.get("train_input", {}).get("data_processor") == "Gpt2SyntheticDataProcessor" ): if "train_input" in params: params["train_input"]["vocab_size"] = params["train_input"].get( "vocab_size", params["model"]["vocab_size"] ) assert ( params["train_input"]["vocab_size"] == params["model"]["vocab_size"] ), f"Found different vocab_size in train_input ({params['train_input']['vocab_size']}) vs. model ({params['model']['vocab_size']})" params["train_input"]["max_sequence_length"] = params[ "train_input" ].get( "max_sequence_length", params["model"]["max_position_embeddings"], ) if "eval_input" in params: params["eval_input"]["vocab_size"] = params["eval_input"].get( "vocab_size", params["model"]["vocab_size"] ) assert ( params["eval_input"]["vocab_size"] == params["model"]["vocab_size"] ), f"Found different vocab_size in eval_input ({params['eval_input']['vocab_size']}) vs. model ({params['model']['vocab_size']})" params["eval_input"]["max_sequence_length"] = params[ "eval_input" ].get( "max_sequence_length", params["model"]["max_position_embeddings"], ) params["model"]["fp16_type"] = params["model"].get("fp16_type", "bfloat16") params["optimizer"]["loss_scaling_factor"] = params["optimizer"].get( "loss_scaling_factor", 1.0 ) params["optimizer"]["log_summaries"] = params["optimizer"].get( "log_summaries", False ) params["runconfig"]["precision_opt_level"] = params["runconfig"].get( "precision_opt_level", 1 ) set_attention_params(params)