Source code for cerebras.pytorch.optim.NAdam

#
# Cerebras implementation of NAdam optimizer. Adapted from the `torch.optim.NAdam` implementation.
#
# Copyright 2016-2023 Cerebras Systems
# SPDX-License-Identifier: BSD-3-Clause
#

from typing import Iterable, Tuple

import torch

import cerebras.pytorch as cstorch

from .optimizer import Optimizer


[docs]class NAdam(Optimizer): r"""Implements NAdam algorithm to execute within the constraints of the Cerebras WSE, including pre-initializing optimizer state. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 2e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) momentum_decay (float, optional): momentum momentum_decay (default: 4e-3) foreach (bool, optional): whether foreach implementation of optimizer is used (default: None) For further details regarding the algorithm refer to Incorporating Nesterov Momentum into Adam: https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ """
[docs] def __init__( self, params: Iterable[torch.nn.Parameter], lr: float = 2e-3, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0, momentum_decay: float = 4e-3, ): if lr < 0.0: raise ValueError(f"Invalid learning rate: {lr}") if eps < 0.0: raise ValueError(f"Invalid epsilon value: {eps}") if not 0.0 <= betas[0] < 1.0: raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") if not 0.0 <= betas[1] < 1.0: raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") if weight_decay < 0.0: raise ValueError(f"Invalid weight_decay value: {weight_decay}") if momentum_decay < 0.0: raise ValueError(f"Invalid momentum_decay value: {momentum_decay}") defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, momentum_decay=momentum_decay, ) super().__init__(params, defaults, enable_global_step=True)
[docs] def preinitialize(self): """Allocates tensors for the optimizer state to allow direct compilation of the model before the first step. """ for group in self.param_groups: for p in group['params']: self.state[p]["mu_product"] = torch.tensor(1.0).to(p.device) self.state[p]["exp_avg"] = cstorch.zeros_like(p) self.state[p]["exp_avg_sq"] = cstorch.zeros_like(p)
@torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: weight_decay = group["weight_decay"] beta1, beta2 = group["betas"] if not isinstance(beta2, torch.Tensor): beta2 = torch.tensor(beta2) momentum_decay = group["momentum_decay"] eps = group["eps"] lr = group["lr"] for p in group['params']: if p.grad is not None: if p.grad.is_sparse: raise RuntimeError( 'NAdam does not support sparse gradients' ) state = self.state[p] exp_avg = state["exp_avg"] exp_avg_sq = state["exp_avg_sq"] mu_product = state["mu_product"] global_step = self.increment_global_step(p) beta2t = torch.pow(beta2.to(p.device), global_step) bias_correction2 = 1 - beta2t grad = p.grad if weight_decay > 0.0: grad.add_(p, alpha=weight_decay) # calculate the momentum cache \mu^{t} and \mu^{t+1} point_nine_six = torch.tensor(0.96).to(p.device) mu_pow = torch.pow( point_nine_six, (global_step * momentum_decay) ) mu = beta1 * (1.0 - 0.5 * (mu_pow)) mu_next_pow = torch.pow( point_nine_six, ((global_step + 1) * momentum_decay), ) mu_next = beta1 * (1.0 - 0.5 * (mu_next_pow)) # update the mu_product mu_product *= mu mu_product_next = mu_product * mu * mu_next # decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1.0 - beta1) exp_avg_sq.mul_(beta2).addcmul_( grad, grad, value=1.0 - beta2 ) # denom of the update step denom = exp_avg_sq.div(bias_correction2).sqrt().add_(eps) # num of the update step without lr momentum_update = (mu_next * exp_avg) / ( 1.0 - mu_product_next ) grad_update = (grad * (1.0 - mu)) / (1.0 - mu_product) update = momentum_update + grad_update # multiply with lr update *= -lr # update params p.addcdiv_(update, denom) return loss