Source code for cerebras.pytorch.optim.RAdam

#
# Cerebras implementation of RAdam optimizer. Adapted from the `torch.optim.RAdam` implementation.
#
# Copyright 2016-2023 Cerebras Systems
# SPDX-License-Identifier: BSD-3-Clause
#

from typing import Iterable, Tuple

import torch

import cerebras.pytorch as cstorch

from .optimizer import Optimizer


[docs]class RAdam(Optimizer): r"""RAdam optimizer implemented to conform to execution within the constraints of the Cerebras WSE. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-6) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) """
[docs] def __init__( self, params: Iterable[torch.nn.Parameter], lr: float = 1e-3, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-6, weight_decay: float = 0.0, ): if lr < 0.0: raise ValueError(f"Invalid learning rate: {lr} - should be >= 0.0") if not 0.0 <= betas[0] < 1.0: raise ValueError( f"Invalid beta parameter: {betas[0]} - should be in [0.0, 1.0]" ) if not 0.0 <= betas[1] < 1.0: raise ValueError( f"Invalid beta parameter: {betas[1]} - should be in [0.0, 1.0]" ) if weight_decay < 0.0: raise ValueError( f"Invalid weight_decay value: {weight_decay} - should be >= 0.0" ) if eps < 0.0: raise ValueError(f"Invalid epsilon value: {eps} - should be >= 0.0") defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, ) super().__init__(params, defaults, enable_global_step=True)
[docs] def preinitialize(self): """ Allocates tensors for the optimizer state to allow direct compilation of the model before the first step. """ for group in self.param_groups: for p in group["params"]: state = self.state[p] # State initialization # Exponential moving average of gradient values state["exp_avg"] = cstorch.zeros_like(p) # Exponential moving average of squared gradient values state["exp_avg_sq"] = cstorch.zeros_like(p)
@torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: beta1, beta2 = group['betas'] if not isinstance(beta1, torch.Tensor): beta1 = torch.tensor(beta1) if not isinstance(beta2, torch.Tensor): beta2 = torch.tensor(beta2) weight_decay = group["weight_decay"] eps = group["eps"] for p in group['params']: if p.grad is not None: grad = p.grad state = self.state[p] exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] global_step = self.increment_global_step(p) if weight_decay > 0.0: grad = grad.add(p, alpha=weight_decay) beta1t = torch.pow(beta1.to(p.device), global_step) beta2t = torch.pow(beta2.to(p.device), global_step) bias_correction1 = 1 - beta1t bias_correction2 = 1 - beta2t # Decay the first and second moment running average coefficient # In-place operations to update the averages at the same time. exp_avg.mul_(beta1).add_(grad, alpha=1.0 - beta1) exp_avg_sq.mul_(beta2).addcmul_( grad, grad, value=1.0 - beta2 ) # correcting bias for the first moving moment update = exp_avg / bias_correction1 # maximum length of the approximated SMA rho_inf = 2 / (1 - beta2) - 1 # compute the length of the approximated SMA rho_t = ( rho_inf - 2 * global_step * beta2t / bias_correction2 ) one = torch.tensor(1.0).to(p.device) five = torch.tensor(5.0).to(p.device) # Compute the variance rectification term and update parameters accordingly rect = torch.where( torch.gt(rho_t, five), torch.sqrt( (rho_t - 4.0) * (rho_t - 2.0) * rho_inf / ((rho_inf - 4.0) * (rho_inf - 2.0) * rho_t) ), one, ) adaptive_lr = torch.where( torch.gt(rho_t, five), torch.sqrt(bias_correction2) / exp_avg_sq.sqrt().add_(eps), one, ) update *= rect update *= adaptive_lr update *= group["lr"] p.sub_(update) return loss