Source code for cerebras.modelzoo.data_preparation.nlp.tokenizers.HFTokenizer

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import logging
import os

from tokenizers import Tokenizer

logger = logging.getLogger("HFTokenizer")
logger.setLevel(logging.INFO)


[docs]class HFTokenizer: """Designed to integrate the HF's Tokenizer library Args: vocab_file (str): A vocabulary file to create the tokenizer from. special_tokens (list, str): A list or a string representing the special tokens that are to be added to the tokenizer. """ def __init__(self, vocab_file, special_tokens=None): self.tokenizer = Tokenizer.from_file(vocab_file) vocab_dir_path = os.path.dirname(vocab_file) self.tokenizer_config = os.path.join( vocab_dir_path, "tokenizer_config.json" ) if not os.path.exists(self.tokenizer_config): self.tokenizer_config = None logger.warning( """Tokenizer config file is not available in the tokenizer encoder file directory. Therefore setting the default_add_bos flag to be false .""" ) if special_tokens: self.add_special_tokens(special_tokens) self.set_eos_pad_tokens() self.add_bos_token = False self.bos_token = None if self.tokenizer_config: with open(self.tokenizer_config, 'r') as json_file: data = json.load(json_file) self.add_bos_token = data.get("add_bos_token", False) self.bos_token = self.get_token_from_tokenizer_config( data, "bos_token" ) eos_token = self.get_token_from_tokenizer_config(data, "eos_token") pad_token = self.get_token_from_tokenizer_config(data, "pad_token") if eos_token: self.eos_id = self.get_token_id(eos_token) if pad_token: self.pad_id = self.get_token_id(pad_token) self.bos_token_id = ( self.get_token_id(self.bos_token) if self.bos_token else None ) def set_eos_pad_tokens(self): self.eos_id = self.get_token_id("<|endoftext|>") self.pad_id = self.get_token_id("<|padding|>")
[docs] def get_token_from_tokenizer_config(self, json_data, token): """ This api is designed to extract token information from the tokenizer config json file. We assume the token data to be in 2 formats either as a string or a dictionary. """ if token in json_data and isinstance(json_data[token], str): return json_data[token] elif token in json_data and isinstance(json_data[token], dict): return json_data[token].get("content", None) # If token not in the expected formats or missing else: return None
def encode(self, text): return self.tokenizer.encode(text).ids def decode(self, token_ids, skip_special_tokens=False): return self.tokenizer.decode( token_ids, skip_special_tokens=skip_special_tokens ) def add_special_tokens(self, special_tokens): self.tokenizer.add_special_tokens(special_tokens) def add_token(self, token): self.tokenizer.add_tokens(token) def get_token_id(self, token): return self.tokenizer.token_to_id(token) def get_token(self, id): return self.tokenizer.id_to_token(id) @property def eos(self): return self.eos_id @property def pad(self): return self.pad_id