cerebras.modelzoo.data.vision.classification.config.ImageNet1KProcessorConfig#

class cerebras.modelzoo.data.vision.classification.config.ImageNet1KProcessorConfig(batch_size: int = <object object at 0x7fc286331b70>, shuffle: bool = True, shuffle_seed: int = 0, num_workers: int = 0, prefetch_factor: int = 10, persistent_workers: bool = True, data_dir: Union[str, List[str]] = <object object at 0x7fc286331b70>, num_classes: int = <object object at 0x7fc286331b70>, mixed_precision: bool = <object object at 0x7fc286331b70>, transforms: List[dict] = <factory>, image_size: int = 224, noaugment: bool = False, drop_last: bool = True, sampler: str = 'random', ra_sampler_num_repeat: int = 3, mixup_alpha: float = 0.1, cutmix_alpha: float = 0.1, use_worker_cache: bool = <object object at 0x7fc286331b70>)[source]#
use_worker_cache: bool = <object object>#
batch_size: int = <object object>#

Batch size to be used

cutmix_alpha: float = 0.1#
data_dir: Union[str, List[str]] = <object object>#
drop_last: bool = True#
image_size: int = 224#
mixed_precision: bool = <object object>#
mixup_alpha: float = 0.1#
noaugment: bool = False#
num_classes: int = <object object>#
num_workers: int = 0#

The number of PyTorch processes used in the dataloader

persistent_workers: bool = True#

Whether or not to keep workers persistent between epochs

prefetch_factor: int = 10#

The number of batches to prefetch in the dataloader

ra_sampler_num_repeat: int = 3#
sampler: str = 'random'#
shuffle: bool = True#

Whether or not to shuffle the dataset

shuffle_seed: int = 0#

Seed used for deterministic shuffling

transforms: List[dict]#