tf.PositionEmbeddingLayer module
tf.PositionEmbeddingLayer module¶
- class tf.PositionEmbeddingLayer.PositionEmbeddingLayer(*args: Any, **kwargs: Any)¶
Bases:
modelzoo.common.layers.tf.BaseLayer.BaseLayer
Implementation of the position embedding layer.
Adds positional information to the token embedding provided as input. Supports
'fixed'
and'learned'
positional embeddings.- Parameters
max_position_embeddings (int) – Maximum sequence length to train using the model. If
None
, set to the input sequence length.embedding_type (str) –
Options are
'learned'
or'fixed'
.Learned: Trainable weights for embeddings.
Fixed: Fixed weights for embeddings.
embeddings_initializer (callable) – Embeddings initializer.
embeddings_regularizer (callable) – Embeddings regularizer.
boundary_casting (bool) – See the documentation for
BaseLayer
.tf_summary – See the documentation for
BaseLayer
.**kwargs – Additional keyword arguments for
BaseLayer
.
- build(input_shape)¶
- call(inputs, position_ids=None)¶
Add position embeddings to the inputs.
- Parameters
inputs (Tensor) – Input of the size
[batch_size, seq_len, embedding_size]
.position_ids (Tensor) – Position IDs of the inputs.A 1D tensor of size
seq_len
. IfNone
(default), assumes that corresponds to[0, 1, ..., seq_len-1]
.